top of page

Offshore wind digital twin fundamentals encompass a wide range of interconnected concepts. Key terms include digital twin, offshore wind farm, wind turbine, SCADA, predictive maintenance, condition monitoring, machine learning, artificial intelligence, AI, IoT, Internet of Things, sensors, data acquisition, data analytics, big data, cloud computing, edge computing, high-performance computing, HPC, simulation, modeling, computational fluid dynamics, CFD, finite element analysis, FEA, structural analysis, fatigue analysis, blade dynamics, rotor dynamics, gearbox health, generator performance, yaw system, pitch system, control systems, power conversion, grid integration, offshore operations, marine environment, metocean data, wave height, wind speed, current velocity, turbine installation, O&M, operation and maintenance, lifecycle management, asset integrity, risk assessment, downtime reduction, optimization, efficiency, cost reduction, virtual commissioning, virtual reality, VR, augmented reality, AR, mixed reality, MR, digital thread, data integration, interoperability, standards, cybersecurity, data security, remote sensing, LiDAR, radar, satellite imagery, drone inspection, underwater inspection, autonomous vessels, robotics, digital engineering, model calibration, model validation, uncertainty quantification, sensitivity analysis, what-if scenarios, decision support, stakeholder collaboration, communication, visualization, dashboards, reporting, real-time data, historical data, data mining, pattern recognition, anomaly detection, fault diagnosis, prognosis, remaining useful life, RUL, life extension, performance optimization, energy yield, AEP, capacity factor, wind resource assessment, site selection, environmental impact, social impact, regulatory compliance, permitting, financing, insurance, supply chain, logistics, manufacturing, installation vessels, heavy lift cranes, subsea cables, foundations, mooring systems, offshore platforms, crew transfer vessels, safety, health, environment, SHE, risk management, emergency response, training, education, workforce development, digital skills, innovation, research, development, R&D, future of energy, renewable energy, sustainable energy, clean energy, green energy, energy transition, decarbonization, climate change, circular economy, lifecycle assessment, LCA, cradle-to-grave, sustainability metrics, environmental monitoring, biodiversity, marine ecology, noise pollution, visual impact, community engagement, stakeholder engagement, social license, public acceptance, policy, regulation, market analysis, business models, value creation, digital transformation, industry 4.0, smart grids, energy storage, hydrogen, power-to-x, sector coupling, smart cities, future of work, digital twins in energy, digital twins for renewables, offshore wind energy, wind power, renewable energy integration, smart energy systems, energy management, energy efficiency, carbon footprint, sustainability reporting, ESG, environmental, social, and governance, corporate social responsibility, CSR, innovation ecosystems, open innovation, collaboration platforms, knowledge sharing, best practices, standards development, certification, quality assurance, project management, construction management, commissioning, decommissioning, repowering, circular economy principles, waste management, recycling, material reuse, sustainable development goals, SDGs, United Nations, Paris Agreement, climate action, energy policy, offshore wind policy, renewable energy targets, energy security, energy access, just transition, workforce transition, skills gap, digital divide, inclusive growth, social equity, environmental justice, community benefits, local content, supply chain development, economic development, regional development, global energy landscape, energy future, technological advancements, digital technologies, emerging technologies, future trends, offshore wind innovation, digital twin technology, digital twin applications, offshore wind industry, renewable energy industry, energy sector, maritime sector, offshore sector, engineering, procurement, construction, EPC, turnkey projects, project finance, investment, due diligence, feasibility studies, risk mitigation, insurance solutions, offshore wind insurance, marine insurance, cyber insurance, data privacy, data governance, intellectual property, open source, collaboration tools, communication platforms, project management software, data visualization tools, simulation software, modeling software, analytics platforms, cloud platforms, edge platforms, hardware, software, connectivity, sensors and instrumentation, data storage, data processing, data security, cybersecurity threats, cyberattacks, data breaches, vulnerability assessment, risk mitigation strategies, security protocols, authentication, authorization, access control, encryption, data integrity, data quality, data validation, data cleaning, data transformation, data analysis techniques, statistical analysis, machine learning algorithms, deep learning, neural networks, predictive modeling, forecasting, optimization algorithms, control algorithms, simulation models, computational models, numerical methods, finite element methods, computational fluid dynamics methods, model calibration techniques, model validation techniques, uncertainty quantification methods, sensitivity analysis methods, what-if analysis, scenario planning, decision-making processes, stakeholder engagement strategies, communication strategies, visualization techniques, reporting methods, key performance indicators, KPIs, performance metrics, data-driven insights, actionable intelligence, digital twin benefits, business value, return on investment, ROI, cost-benefit analysis, feasibility analysis, technology roadmap, innovation strategy, digital transformation strategy, offshore wind strategy, renewable energy strategy, sustainability strategy, energy transition strategy, climate action strategy, digital twin roadmap, implementation plan, project execution, change management, organizational culture, digital culture, talent development, skills development, training programs, education programs, research collaborations, industry partnerships, government support, policy incentives, regulatory frameworks, permitting processes, environmental impact assessment, social impact assessment, community engagement plans, stakeholder engagement plans, communication plans, risk management plans, emergency response plans, safety plans, health plans, environmental management plans, quality management plans, project management plans, contract management, supply chain management, logistics management, operations management, maintenance management, asset management, lifecycle management, digital twin platform, digital twin ecosystem, offshore wind ecosystem, renewable energy ecosystem, energy ecosystem, digital economy, smart economy, sustainable economy, circular economy, knowledge economy, future skills, digital literacy, data literacy, computational thinking, problem-solving skills, critical thinking skills, communication skills, collaboration skills, leadership skills, innovation skills, creativity, entrepreneurship, digital leadership, digital citizenship, ethical considerations, social responsibility, environmental stewardship, sustainability principles, circular economy principles, responsible innovation, digital ethics, data ethics, AI ethics, responsible AI, ethical AI, trustworthy AI, explainable AI, transparent AI, accountable AI, fair AI, unbiased AI, inclusive AI, human-centered AI, AI for good, AI for sustainability, AI for climate action, AI for energy, AI for renewables, AI for offshore wind, digital twin for AI, AI in digital twins, machine learning in digital twins, deep learning in digital twins, predictive maintenance with digital twins, condition monitoring with digital twins, optimization with digital twins, simulation with digital twins, modeling with digital twins, data analytics with digital twins, IoT in digital twins, cloud computing in digital twins, edge computing in digital twins, HPC in digital twins, virtual commissioning with digital twins, virtual reality in digital twins, augmented reality in digital twins, mixed reality in digital twins, digital thread in digital twins, data integration in digital twins, interoperability in digital twins, cybersecurity in digital twins, data security in digital twins, remote sensing in digital twins, drone inspection in digital twins, underwater inspection in digital twins, autonomous vessels in digital twins, robotics in digital twins, digital engineering in digital twins, model calibration in digital twins, model validation in digital twins, uncertainty quantification in digital twins, sensitivity analysis in digital twins, what-if scenarios in digital twins, decision support with digital twins, stakeholder collaboration with digital twins, communication with digital twins, visualization with digital twins, dashboards with digital twins, reporting with digital twins, real-time data in digital twins, historical data in digital twins, data mining in digital twins, pattern recognition in digital twins, anomaly detection in digital twins, fault diagnosis in digital twins, prognosis in digital twins, remaining useful life in digital twins, life extension with digital twins, performance optimization with digital twins, energy yield with digital twins, AEP with digital twins, capacity factor with digital twins, wind resource assessment with digital twins, site selection with digital twins, environmental impact assessment with digital twins, social impact assessment with digital twins, regulatory compliance with digital twins, permitting with digital twins, financing with digital twins, insurance with digital twins, supply chain with digital twins, logistics with digital twins, manufacturing with digital twins, installation vessels with digital twins, heavy lift cranes with digital twins, subsea cables with digital twins, foundations with digital twins, mooring systems with digital twins, offshore platforms with digital twins, crew transfer vessels with digital twins, safety with digital twins, health with digital twins, environment with digital twins, risk management with digital twins, emergency response with digital twins, training with digital twins, education with digital twins, workforce development with digital twins, digital skills with digital twins, innovation with digital twins, research with digital twins, development with digital twins, future of energy with digital twins, renewable energy with digital twins, sustainable energy with digital twins, clean energy with digital twins, green energy with digital twins, energy transition with digital twins, decarbonization with digital twins, climate change with digital twins, circular economy with digital twins, lifecycle assessment with digital twins, cradle-to-grave with digital twins, sustainability metrics with digital twins, environmental monitoring with digital twins, biodiversity with digital twins, marine ecology with digital twins, noise pollution with digital twins, visual impact with digital twins, community engagement with digital twins, stakeholder engagement with digital twins, social license with digital twins, public acceptance with digital twins, policy with digital twins, regulation with digital twins, market analysis with digital twins, business models with digital twins, value creation with digital twins, digital transformation with digital twins, industry 4.0 with digital twins, smart grids with digital twins, energy storage with digital twins, hydrogen with digital twins, power-to-x with digital twins, sector coupling with digital twins, smart cities with digital twins, future of work with digital twins.

Digital Twin Fundamentals for Offshore Wind

Price

Please inquire

Duration

1-Day

Dates

On demand

Format

Virtual (Live)

Course Status

Open

Digital Twin Fundamentals for Offshore Wind

This one-day course provides a comprehensive introduction to the concept and practical implementation of digital twins in the offshore wind industry. Participants will gain a deep understanding of digital twin technology, its applications, benefits, and its crucial role in enhancing operational efficiency, predictive maintenance, and decision-making processes within offshore wind projects.


Who Should Attend


This course is tailored for professionals in the offshore wind industry looking to enhance their knowledge of digital twins and how they can be effectively applied in wind farm operations. It is suitable for engineers, project managers, data analysts, and anyone interested in the latest advancements in offshore wind technology. Whether you are new to digital twins or seeking to expand your expertise, this course provides valuable insights and practical skills.



Course Overview:


Understanding Digital Twins in Offshore Wind

- Key components and technologies involved in creating digital twins.

- Real-world applications and benefits of digital twins.


Building Digital Twins for Wind Farms

- The process of creating a digital twin for offshore wind farms.

- Data collection, sensors, and IoT devices.

- Data management, storage, and integration for digital twins.

- Hands-on exercises in setting up digital twin models.


Monitoring, Analysis, and Predictive Maintenance

- Real-time monitoring of offshore wind assets through digital twins.

- Data analysis, anomaly detection, and trend forecasting.

- Predictive maintenance and risk mitigation through digital twin insights.

- Case studies on improved maintenance strategies.


Digital Twins for Decision-Making and Optimization

- The role of digital twins in operational decision-making.

- Scenario analysis, optimization, and resource planning.

- Integration with existing systems and software.

- Future trends and advancements in digital twin technology.


Course Instructors

Espen Krogh

Senior Technical Advisor, TGS


Espen Krogh is a senior technical advisor in TGS and the chairperson of the OPC Foundation Wind Power Plant working group. In his career, he has worked his way from being SW developer in Kongsberg Maritime, to CTO- and eventually CEO in TGS Prediktor, a company that was acquired by TGS in 2022. Espen headed TGS Prediktor when the company was awarded and extensive real-time data management contract in the SSE/Equinor Dogger Bank project – the world’s largest offshore windfarm. TGS has data, expertise, and tools for the complete lifecycle of offshore windfarms.


Thibaut Forest

Principal Data Scientist, Equinor


Thibaut Forest is a principal data scientist at Equinor with a six-year track record in creating digital solutions for wind farms. His skills in understanding data and using machine learning have been key in a wide array of projects aimed at making wind farms more profitable. These projects include work on both traditional and floating wind farms.

 

Thibaut has led a team that watches over the health of wind farm equipment and is now working on new ways to use data to predict and prevent unexpected breakdowns. His work is especially important for the Dogger Bank wind farm, which is on its way to becoming the biggest of its kind in the world.


The course outline is subject to change and a detailed agenda will be shared after enrollment.



©2024  American Offshore Wind Academy

bottom of page